Projet CECI
CECI
CECI Est une Carte Interactive
Accueil
Contribuer
Article
Logiciel
Projet
Auteur
Institution
Rechercher
Par catégorie
Par mots clés
×
Choisissez une langue
Français
English
Proposer une modification
Annuler la modification
Demander le retrait de cet article
Forecasting student achievement in MOOCs with natural language processing
Auteurs
Carly Robinson
Michael Yeomans
Justin Reich
Chris Hulleman
Hunter Gehlbach
Institutions
University of California
Harvard University
MIT
University of Virginia
Année :
2016
Lieu de publication de l'article :
Proc. LAK
Résumé de l'article
Student intention and motivation are among the strongest predictors of persistence and completion in Massive Open Online Courses (MOOCs), but these factors are typically measured through fixed-response items that constrain student expression. We use natural language processing techniques to evaluate whether text analysis of open responses questions about motivation and utility value can offer additional capacity to predict persistence and completion over and above information obtained from fixed-response items. Compared to simple benchmarks based on demographics, we find that a machine learning prediction model can learn from unstructured text to predict which students will complete an online course. We show that the model performs well out-of-sample, compared to a standard array of demographics. These results demonstrate the potential for natural language processing to contribute to predicting student success in MOOCs and other forms of open online learning.
Mots-clés
Caractéristiques
Niveau
Ouvert
Etape
Description
Diagnostic
Prédiction
Environnement
MOOC
Caractéristiques
level
primary
secondary
higher education
open
other level
step
description
diagnostic
prediction
prescription
other step
environment
distance
face-to-face
hybrid
MOOC
other environment
target
learners
teachers
institutions
researchers
other target
Envoyer
×
Annuler vos modifications ?
Oui
Non
Suppression
×
Pourquoi voulez-vous que cet article soit retiré ?
Demander le retrait de cet article